amebazii/types/image/ota.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
// Firmware/OTA Firmware Layout
// ------------------------------------------------------------------------------------
//
// ┌────────────────────────────────────────┐ ┐
// │ OTA Signature (32 bytes) │ │
// ├────────────────────────────────────────┤ │
// │ Public Key 0 (32 bytes) │ │
// │ ... │ │
// │ Public Key 5 (32 bytes) │ │
// ├────────────────────────────────────────┤ │
// │ SubImage 0 Header (96 bytes) │ │
// ├────────────────────────────────────────┤ │
// │ SubImage 0 FST (96 bytes) │ │ SubImage 0 Hash
// ├────────────────────────────────────────┤ │
// │ SubImage 0 Section 0 Header (96 bytes) │ │
// ├────────────────────────────────────────┤ │
// │ SubImage 0 Section 0 Data │ │
// └────────────────────────────────────────┘ │
// . │
// . │
// . │
// ┌────────────────────────────────────────┐ │
// │ SubImage 0 Section N Header (96 bytes) │ │
// ├────────────────────────────────────────┤ │
// │ SubImage 0 Section N Data │ │
// ├────────────────────────────────────────┤ ┘
// │ SubImage 0 Hash (32 bytes) │
// ├────────────────────────────────────────┤
// │ SubImage 1 Header (96 bytes) │
// ├────────────────────────────────────────┤
// │ SubImage 1 FST (96 bytes) │
// ├────────────────────────────────────────┤
// │ SubImage 1 Section 0 Header (96 bytes) │
// ├────────────────────────────────────────┤
// │ SubImage 1 Section 0 Data │
// └────────────────────────────────────────┘
// .
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::{
io::{self, Cursor},
vec,
};
use crate::{
error::Error,
is_valid_data,
types::{
enums::HashAlgo,
from_stream,
fst::FST,
header::{ImageHeader, KeyBlock},
section::Section,
BinarySize, DataRefType, DataType, FromStream, ToStream,
},
util::{skip_aligned, write_fill},
write_aligned, write_data, write_padding,
};
use super::{AsImage, EncryptedOr};
/// Represents a sub-image, including a header, FST (Firmware Security Table), sections, and hash for integrity verification.
///
/// This struct provides methods to manipulate sections, retrieve data, and manage the sub-image’s hash.
#[derive(Debug)]
pub struct SubImage {
/// The header of the sub-image containing general information about the sub-image.
pub header: ImageHeader,
// REVISIT: this struct does not cover the use-case of an encrypted sub-image!!
/// The Firmware Security Table (FST) associated with the sub-image.
pub fst: EncryptedOr<FST>,
/// The collection of sections in the sub-image.
sections: EncryptedOr<Vec<Section>>,
/// The hash of the sub-image used for integrity verification.
hash: [u8; 32],
}
impl Default for SubImage {
/// Creates a new `SubImage` with default values.
///
/// The default `SubImage` is initialized as follows:
/// - The `header` is initialized with the default value of `ImageHeader`.
/// - The `fst` is initialized with the default value of `FST`.
/// - The `sections` is an empty vector.
/// - The `hash` is set to an array of 32 `0xFF` bytes (indicating an uninitialized or invalid hash).
fn default() -> Self {
SubImage {
header: ImageHeader::default(),
fst: EncryptedOr::Plain(FST::default()),
sections: EncryptedOr::Plain(Vec::new()),
hash: [0xFF; 32],
}
}
}
impl SubImage {
/// Returns a reference to the hash of the sub-image.
///
/// # Returns:
/// - A reference to the 32-byte hash of the sub-image.
///
pub fn get_hash(&self) -> &[u8; 32] {
&self.hash
}
/// Returns a reference to the sections in the sub-image.
///
/// This method provides access to the sub-image's sections as an immutable slice.
///
/// # Returns:
/// - A reference to the `Vec<Section>` representing the sections in the sub-image.
///
pub fn get_sections(&self) -> &[Section] {
match &self.sections {
EncryptedOr::Plain(sections) => sections,
EncryptedOr::Encrypted(_) => panic!("SubImage is encrypted"),
}
}
/// Returns a mutable reference to the sections in the sub-image.
///
/// This method provides access to the sub-image's sections as a mutable slice,
/// allowing for modification of the sections.
///
/// # Returns:
/// - A mutable reference to the `Vec<Section>` representing the sections in the sub-image.
///
pub fn get_sections_mut(&mut self) -> &mut [Section] {
match &mut self.sections {
EncryptedOr::Plain(sections) => sections,
EncryptedOr::Encrypted(_) => panic!("SubImage is encrypted"),
}
}
/// Adds a new section to the sub-image.
///
/// This method appends the provided `section` to the list of sections in the sub-image.
///
/// # Arguments:
/// - `section`: The section to add to the sub-image.
///
pub fn add_section(&mut self, section: Section) {
match &mut self.sections {
EncryptedOr::Plain(sections) => sections.push(section),
EncryptedOr::Encrypted(_) => panic!("SubImage is encrypted"),
}
}
/// Removes the section at the specified index from the sub-image.
///
/// This method removes the section at the given `index` from the list of sections.
/// If the index is out of bounds, the method will panic.
///
/// # Arguments:
/// - `index`: The index of the section to remove.
///
pub fn rem_section_at(&mut self, index: usize) {
match &mut self.sections {
EncryptedOr::Plain(sections) => sections.remove(index),
EncryptedOr::Encrypted(_) => panic!("SubImage is encrypted"),
};
}
/// Returns a reference to the section at the specified index, if it exists.
///
/// This method retrieves the section at the specified index. If the index is out of bounds,
/// `None` is returned.
///
/// # Arguments:
/// - `index`: The index of the section to retrieve.
///
/// # Returns:
/// - `Option<&Section>`: `Some(section)` if the section exists, or `None` if the index is out of bounds.
///
pub fn get_section(&self, index: usize) -> Option<&Section> {
match &self.sections {
EncryptedOr::Plain(sections) => sections.get(index),
EncryptedOr::Encrypted(_) => panic!("SubImage is encrypted"),
}
}
/// Returns a mutable reference to the section at the specified index, if it exists.
///
/// This method retrieves the section at the specified index. If the index is out of bounds,
/// `None` is returned.
///
/// # Arguments:
/// - `index`: The index of the section to retrieve.
///
/// # Returns:
/// - `Option<&mut Section>`: `Some(section)` if the section exists, or `None` if the index is out of bounds.
///
pub fn get_section_mut(&mut self, index: usize) -> Option<&mut Section> {
match &mut self.sections {
EncryptedOr::Plain(sections) => sections.get_mut(index),
EncryptedOr::Encrypted(_) => panic!("SubImage is encrypted"),
}
}
/// Reads the signature for this `SubImage` from a binary stream and computes its hash.
///
/// This function reads the header and segment data of the `SubImage` from the given reader,
/// and then computes the hash of the data using the specified hashing algorithm (`algo`).
/// Optionally, a key can be provided for use by certain hashing algorithms (e.g., HMAC).
///
/// # Arguments:
/// - `reader`: A mutable reference to a reader that implements both `io::Read` and `io::Seek`.
/// - `algo`: The hash algorithm to use for computing the signature (e.g., SHA-256, HMAC).
/// - `key`: An optional key for algorithms that require one (e.g., HMAC). If no key is needed, this can be `None`.
///
/// # Returns:
/// - `Result<Vec<u8>, Error>`: Returns the computed signature as a `Vec<u8>` if successful,
/// or an `Error` if there is an issue reading the data or computing the hash.
pub fn signature_from_stream<R>(
&self,
reader: &mut R,
algo: HashAlgo,
key: Option<&[u8]>,
) -> Result<Vec<u8>, Error>
where
R: io::Read + io::Seek,
{
let mut buffer = vec![0x00; ImageHeader::binary_size() + self.header.segment_size as usize];
reader.read_exact(&mut buffer)?;
algo.compute_hash(&buffer, key)
}
}
impl AsImage for SubImage {
/// Set the signature for the SubImage.
///
/// # Arguments:
/// - `signature`: A slice containing the signature to set.
fn set_signature(&mut self, signature: &[u8]) {
self.hash.copy_from_slice(signature);
}
/// Set the segment size for the SubImage.
///
/// # Arguments:
/// - `size`: The size to set for the SubImage's segment.
fn set_segment_size(&mut self, size: u32) {
self.header.segment_size = size;
// REVISIT: by default, the partition size is 0
// if let EncryptedOr::Plain(fst) = &mut self.fst {
// fst.partition_size = size - FST::binary_size() as u32;
// }
}
/// Build the segment size for the SubImage.
///
/// # Returns:
/// The total segment size, calculated by adding the size of the `ImageHeader`, the `FST`,
/// and the aligned sizes of all the sections.
fn build_segment_size(&self) -> u32 {
// Segment size does not include the hash or image padding
FST::binary_size() as u32
+ match &self.sections {
EncryptedOr::Plain(sections) => sections
.iter()
.map(Section::build_aligned_size)
.sum::<u32>(),
EncryptedOr::Encrypted(sections_data) => sections_data.len() as u32,
}
}
/// Build the signature for the SubImage.
///
/// This function generates a signature by calculating the hash of the image's content,
/// including the header, firmware security table (FST), and sections.
///
/// # Arguments:
/// - `key`: A byte slice containing the key used to generate the signature.
///
/// # Returns:
/// A `Result<Vec<u8>, crate::error::Error>` that contains:
/// - `Ok(Vec<u8>)`: The signature as a byte vector.
/// - `Err(Error)`: An error if signature calculation fails (e.g., unsupported hash algorithm).
fn build_signature(&self, key: Option<&[u8]>) -> Result<Vec<u8>, crate::error::Error> {
let hash_algo = match &self.fst {
// TODO: what should we use in case of an encrypted FST?
EncryptedOr::Encrypted(_) => Some(HashAlgo::Sha256),
EncryptedOr::Plain(fst) => fst.hash_algo,
};
let mut buffer = vec![0u8; ImageHeader::binary_size() + self.build_segment_size() as usize];
let mut writer = Cursor::new(&mut buffer);
// Write the header, FST, and sections to the buffer.
self.header.write_to(&mut writer)?;
self.fst.write_to(&mut writer)?;
self.sections.write_to(&mut writer)?;
// Compute the hash using the FST's hash algorithm.
match hash_algo {
Some(algo) => Ok(algo.compute_hash(&buffer, key)?.to_vec()),
None => Err(Error::NotImplemented(
"SubImage::build_signature".to_string(),
)),
}
}
}
impl FromStream for SubImage {
/// Reads a `SubImage` from a binary stream.
///
/// # Arguments:
/// - `reader`: The stream from which the data will be read. This must implement `std::io::Read` and `std::io::Seek`.
fn read_from<R>(&mut self, reader: &mut R) -> Result<(), Error>
where
R: io::Read + io::Seek,
{
self.header.read_from(reader)?;
if self.header.is_encrypt {
self.fst = EncryptedOr::Encrypted(vec![0; FST::binary_size() as usize]);
self.fst.read_from(reader)?;
let mut sections =
vec![0; self.header.segment_size as usize - FST::binary_size() as usize];
reader.read_exact(&mut sections)?;
self.sections = EncryptedOr::Encrypted(sections);
} else {
self.fst.read_from(reader)?;
let mut sections = Vec::new();
loop {
let section: Section = from_stream(reader)?;
let has_next = section.header.has_next();
sections.push(section);
if !has_next {
break;
}
}
self.sections = EncryptedOr::Plain(sections);
}
reader.read_exact(&mut self.hash)?;
skip_aligned(reader, if self.header.has_next() { 0x4000 } else { 0x40 })?;
Ok(())
}
}
impl ToStream for SubImage {
/// Writes a `SubImage` to a binary stream.
///
/// # Arguments:
/// - `writer`: The stream to which the data will be written. This must implement `std::io::Write` and `std::io::Seek`.
///
fn write_to<W>(&self, writer: &mut W) -> Result<(), Error>
where
W: io::Write + io::Seek,
{
self.header.write_to(writer)?;
self.fst.write_to(writer)?;
self.sections.write_to(writer)?;
writer.write_all(&self.hash)?;
let align = if self.header.has_next() { 0x4000 } else { 0x40 };
write_aligned!(writer, align, 0x87, optional);
Ok(())
}
}
/// Represents an OTA (Over-The-Air) image.
///
/// An `OTAImage` is used in the context of firmware updates, where the image consists of
/// multiple subimages (representing different sections of the firmware), each of which
/// may be signed and encrypted. The `keyblock` holds encrypted keys, `public_keys` are used for
/// verifying signatures, and `checksum` ensures data integrity.
///
/// **Note**: The encryption and signature verification are currently are using the hash key
/// specified in the partition table!
#[derive(Debug)]
pub struct OTAImage {
/// The key block containing cryptographic keys for encryption and signature verification.
pub keyblock: KeyBlock,
/// Public keys (up to 5) used for signature verification.
public_keys: [DataType<32>; 5],
/// A collection of subimages contained in the OTA image.
subimages: Vec<SubImage>,
/// A checksum value for verifying the integrity of the OTA image.
pub checksum: Option<u32>,
}
impl Default for OTAImage {
/// Creates a default `OTAImage` with an empty keyblock, no public keys, no subimages, and a checksum of -1.
fn default() -> Self {
OTAImage {
keyblock: KeyBlock::default(),
public_keys: [None; 5],
subimages: Vec::new(),
checksum: None,
}
}
}
impl OTAImage {
/// Returns a slice of the subimages contained in the OTA image.
///
/// # Returns:
/// - A reference to a slice containing all the subimages.
pub fn get_subimages(&self) -> &[SubImage] {
return &self.subimages;
}
/// Returns a mutable slice of the subimages contained in the OTA image.
///
/// # Returns:
/// - A mutable reference to a slice containing all the subimages.
pub fn get_subimages_mut(&mut self) -> &mut [SubImage] {
return &mut self.subimages;
}
/// Retrieves a specific subimage by its index.
///
/// # Arguments:
/// - `index`: The index of the subimage to retrieve.
///
/// # Returns:
/// - `Some(SubImage)` if the subimage exists at the given index, `None` otherwise.
pub fn get_subimage(&self, index: usize) -> Option<&SubImage> {
return self.subimages.get(index);
}
/// Retrieves a mutable reference to a specific subimage by its index.
///
/// # Arguments:
/// - `index`: The index of the subimage to retrieve.
///
/// # Returns:
/// - `Some(&mut SubImage)` if the subimage exists at the given index, `None` otherwise.
pub fn get_subimage_mut(&mut self, index: usize) -> Option<&mut SubImage> {
return self.subimages.get_mut(index);
}
/// Adds a new subimage to the OTA image.
///
/// # Arguments:
/// - `subimage`: The `SubImage` to add to the OTA image.
pub fn add_subimage(&mut self, subimage: SubImage) {
self.subimages.push(subimage);
}
/// Removes a subimage from the OTA image at the specified index.
///
/// # Arguments:
/// - `index`: The index of the subimage to remove.
pub fn rem_subimage_at(&mut self, index: usize) {
self.subimages.remove(index);
}
/// Returns the encryption public key from the keyblock, which is used for OTA signature verification.
///
/// # Returns:
/// - A reference to the encryption public key (32 bytes) used for signature verification.
pub fn get_ota_signature(&self) -> &[u8; 32] {
return self.keyblock.get_enc_pubkey();
}
/// Retrieves a specific public key used for signature verification from the OTA image.
///
/// # Arguments:
/// - `index`: The index (0-4) of the public key to retrieve.
///
/// # Returns:
/// - A reference to the public key at the specified index, if it exists.
pub fn get_public_key(&self, index: u8) -> DataRefType<32> {
return self.public_keys[index as usize].as_ref();
}
}
// cryptographic ops
impl OTAImage {
/// Builds the OTA image signature, which is the hash result of the first SubImage's header.
///
/// # Arguments:
/// - `key`: An optional key to be used in the hash calculation (may be `None` if no key is provided).
///
/// # Returns:
/// - `Result<Vec<u8>, crate::error::Error>`: The computed signature as a vector of bytes on success,
/// or an error if the computation cannot be completed (e.g., `fst.hash_algo` is `None`).
pub fn build_ota_signature(&self, key: Option<&[u8]>) -> Result<Vec<u8>, crate::error::Error> {
let mut buffer = Vec::with_capacity(ImageHeader::binary_size());
// according to spec:
// OTA signature: The hash result of the 1st Image header “Sub FW Image 0 Header”
// which is:
// ├────────────────────────────────────────┤
// │ SubImage 0 Header (96 bytes) │
// ├────────────────────────────────────────┤
//
// the key is the hash key from the partition table record for this image
if let Some(subimage) = self.get_subimage(0) {
if let EncryptedOr::Plain(fst) = &subimage.fst {
if let Some(algo) = &fst.hash_algo {
let mut writer = Cursor::new(&mut buffer);
subimage.header.write_to(&mut writer)?;
return algo.compute_hash(&buffer, key);
} else {
return Err(Error::NotImplemented(
"OTAImage::build_ota_signature: subimage[0].fst.hash_algo is None"
.to_string(),
));
}
}
return Err(Error::NotImplemented(
"OTAImage::build_ota_signature: subimage[0].fst is encrypted".to_string(),
));
}
Err(Error::NotImplemented(
"OTAImage::build_ota_signature: subimage[0] not found".to_string(),
))
}
/// Reads the OTA signature from a stream and computes its hash using a specified algorithm.
///
/// This function reads the `OTAImage` signature data from the provided reader, computes
/// its hash using the specified `HashAlgo`, and returns the computed signature.
///
/// The function assumes that the data read corresponds to the "OTA signature" section of
/// the `OTAImage` format, which is typically the first part of the image.
///
/// # Arguments:
/// - `reader`: A mutable reference to a reader that implements `io::Read` and `io::Seek`.
/// This will be used to read the OTA signature data.
/// - `algo`: The hash algorithm to use for computing the signature (e.g., SHA-256).
/// - `key`: An optional key to be used by certain hash algorithms (e.g., for HMAC).
/// If the algorithm does not require a key, this can be `None`.
///
/// # Returns:
/// - `Result<Vec<u8>, crate::error::Error>`: Returns the computed signature as a `Vec<u8>`,
/// or an error if there is an issue reading the data or computing the hash.
pub fn ota_signature_from_stream<R>(
reader: &mut R,
algo: HashAlgo,
key: Option<&[u8]>,
) -> Result<Vec<u8>, crate::error::Error>
where
R: io::Read + io::Seek,
{
let mut buffer = vec![0x00; ImageHeader::binary_size()];
reader.read_exact(&mut buffer)?;
algo.compute_hash(&buffer, key)
}
/// Sets the OTA image signature, specifically the public encryption key in the keyblock.
///
/// # Arguments:
/// - `signature`: The signature (encryption public key) to set, which will replace the existing public key.
pub fn set_ota_signature(&mut self, signature: &[u8]) {
self.keyblock
.get_enc_pubkey_mut()
.copy_from_slice(signature);
}
/// Computes the checksum for the OTA image by writing it to a buffer.
///
/// This method serializes the current `OTAImage` object into a byte buffer and then calculates
/// the checksum for the serialized data. The checksum is returned as a 32-bit unsigned integer.
///
/// # Errors
///
/// This function returns an error if the writing process to the buffer fails.
pub fn build_checksum(&self) -> Result<u32, Error> {
let mut buffer = Vec::new();
let mut cursor = std::io::Cursor::new(&mut buffer);
self.write_to(&mut cursor)?;
Ok(OTAImage::checksum_from_buffer(&buffer))
}
/// Updates the checksum field of the OTA image.
///
/// This method resets the `checksum` field to `None` and then calculates and sets the new checksum
/// by calling `build_checksum`. It ensures that the checksum field is always up-to-date.
///
/// # Example
///
/// ```
/// let mut ota_image = /* ... */;
/// if let Err(e) = ota_image.update_checksum() {
/// eprintln!("Failed to update checksum: {}", e);
/// }
/// ```
pub fn update_checksum(&mut self) -> Result<(), Error> {
self.checksum = None;
self.checksum = Some(self.build_checksum()?);
Ok(())
}
/// Updates the OTA image signature using the provided public key.
///
/// This method generates a new OTA signature and updates the `keyblock` field with the
/// signature. If a key is provided, it will be used in the signing process; otherwise,
/// the default behavior is applied.
///
/// # Arguments
///
/// * `key` - An optional reference to a byte slice (`&[u8]`) representing the public key.
///
/// # Errors
///
/// Returns an error if the signing process fails.
pub fn update_ota_signature(&mut self, key: Option<&[u8]>) -> Result<(), Error> {
let new_signature = OTAImage::build_ota_signature(self, key)?;
self.keyblock
.get_enc_pubkey_mut()
.copy_from_slice(&new_signature);
Ok(())
}
/// Calculates a checksum from a byte buffer by summing all the byte values and applying a bitmask.
///
/// # Arguments:
/// - `buf`: The byte buffer to compute the checksum from.
///
/// # Returns:
/// - `i32`: The computed checksum as a 32-bit signed integer.
pub fn checksum_from_buffer(buf: &[u8]) -> u32 {
buf.iter().map(|&byte| byte as u32).sum::<u32>()
}
/// Calculates a checksum from a stream by reading the content into a buffer and computing its checksum.
///
/// # Arguments:
/// - `reader`: A reader that implements `io::Read + io::Seek` from which the content will be read.
///
/// # Returns:
/// - `Result<i32, Error>`: The checksum computed from the stream as a 32-bit signed integer, or an error if the reading fails.
pub fn checksum_from_stream<R>(reader: &mut R) -> Result<u32, Error>
where
R: io::Read + io::Seek,
{
let mut buffer = Vec::new();
// we assume this reader is at pos 0
reader.read_to_end(&mut buffer)?;
Ok(OTAImage::checksum_from_buffer(&buffer[..&buffer.len() - 4]))
}
}
impl FromStream for OTAImage {
/// Reads an `OTAImage` from a binary stream.
///
/// This function assumes that the provided reader is positioned correctly and
/// that the stream contains the expected data format for the `OTAImage` struct.
///
/// # Arguments:
/// - `reader`: A mutable reference to a reader that implements both `io::Read` and `io::Seek`.
///
/// # Returns:
/// - `Result<(), Error>`: Returns `Ok(())` if the data is read and parsed successfully, or an `Error`
/// if something goes wrong (e.g., invalid format, stream read errors).
fn read_from<R>(&mut self, reader: &mut R) -> Result<(), Error>
where
R: io::Read + io::Seek,
{
self.keyblock.read_from(reader)?;
// Read 5 public keys, validate each, and store the valid ones.
for i in 0..5 {
let mut key = [0x00; 32];
reader.read_exact(&mut key)?;
if is_valid_data!(&key) {
self.public_keys[i] = Some(key);
}
}
loop {
let subimage: SubImage = from_stream(reader)?;
let has_next = subimage.header.has_next();
self.subimages.push(subimage);
// If there is no next subimage, break out of the loop.
if !has_next {
break;
}
}
let checksum = reader.read_u32::<LittleEndian>()?;
self.checksum = match checksum {
0xFFFF_FFFF | 0x1A1A_1A1A => None,
v => Some(v),
};
Ok(())
}
}
impl ToStream for OTAImage {
/// Writes an `OTAImage` to a binary stream.
///
/// # Arguments:
/// - `writer`: A mutable reference to a writer that implements both `io::Write` and `io::Seek`.
fn write_to<W>(&self, writer: &mut W) -> Result<(), Error>
where
W: io::Write + io::Seek,
{
self.keyblock.write_to(writer)?;
for key in &self.public_keys {
write_data!(writer, key, 32);
}
for subimage in &self.subimages {
subimage.write_to(writer)?;
}
if let Some(checksum) = self.checksum {
writer.write_u32::<LittleEndian>(checksum)?;
}
Ok(())
}
}