amebazii/types/image/
pt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
use std::io::{self, Cursor};

use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use serde::{Deserialize, Serialize};

use crate::{
    error::Error,
    is_valid_data, read_padding, read_valid_data,
    types::{
        enums::{KeyExportOp, PartitionType},
        from_stream,
        header::{ImageHeader, KeyBlock},
        BinarySize, DataRefType, DataType, FromStream, ToStream,
    },
    util::{hmac_sha256, write_fill},
    write_data, write_padding,
};

use super::{AsImage, EncryptedOr};

/// Represents the configuration of a hardware trap.
///
/// A `TrapConfig` structure holds information related to a trap configuration, including
/// the pin, port, level, and validity of the trap. The fields are packed into a 16-bit
/// integer with specific bitwise encoding. The layout of the 16-bit value is as follows:
///
/// ```text
/// Layout (16-bit integer):
/// 0               8             15
/// 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// |   pin   | port|l|           |v|
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// ```
///
/// Where:
/// - `v` (bit 15) represents the validity of the trap configuration (`1` for valid, `0` for invalid).
/// - `l` (bit 8) represents the level of the trap (`0` or `1`).
/// - `port` (bits 5 to 7) represents the port number (3 bits, value range from 0 to 7).
/// - `pin` (bits 0 to 4) represents the pin number (5 bits, value range from 0 to 31).
///
/// # Type Implementation:
/// - `TrapConfig` can be created from a 16-bit integer using the `From<u16>` trait, and
///   it can be converted back to a 16-bit integer using the `Into<u16>` trait.
///
/// The packing and unpacking logic allows easy conversion between the `TrapConfig` struct
/// and a single 16-bit integer, which is useful for hardware register manipulation.
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct TrapConfig {
    /// Whether the trap configuration is valid (1 bit).
    #[serde(default)]
    pub valid: bool,

    /// The level of the trap (1 bit, 0 or 1).
    #[serde(default)]
    pub level: u8,

    /// The port number (3 bits, value range: 0-7).
    #[serde(default)]
    pub port: u8,

    /// The pin number (5 bits, value range: 0-31).
    #[serde(default)]
    pub pin: u8,
}

impl Default for TrapConfig {
    /// Returns a default `TrapConfig` with all fields set to 0 or `false`.
    fn default() -> Self {
        TrapConfig {
            valid: false,
            level: 0,
            port: 0,
            pin: 0,
        }
    }
}

impl From<u16> for TrapConfig {
    /// Converts a 16-bit integer to a `TrapConfig` by unpacking the respective bits
    /// according to the layout described above.
    ///
    /// # Arguments:
    /// - `value`: The 16-bit integer to convert into a `TrapConfig`.
    ///
    /// # Returns:
    /// A `TrapConfig` where each field is populated based on the respective bits
    /// in the 16-bit integer.
    fn from(value: u16) -> Self {
        TrapConfig {
            valid: (value >> 15) & 0x1 != 0,
            level: ((value >> 8) & 0x1) as u8,
            port: ((value >> 5) & 7) as u8,
            pin: (value & 0x1F) as u8,
        }
    }
}

impl Into<u16> for TrapConfig {
    /// Converts a `TrapConfig` back into a 16-bit integer by packing the fields into
    /// their respective bit positions.
    ///
    /// # Returns:
    /// A 16-bit integer representing the packed values of the `TrapConfig` fields.
    fn into(self) -> u16 {
        ((self.valid as u16) << 15)
            | ((self.level as u16) << 8)
            | ((self.port as u16) << 5)
            | self.pin as u16
    }
}

/// Represents a firmware partition record.
///
/// A `Record` struct encapsulates information about a partition within a firmware image.
/// This record stores a hash key for the partition, which will be later used to verify
/// the signatures of the partition contents.
///
/// # Layout (64 bytes):
/// ```text
///          +---------------+---+---+---+---+---+---+---+----------+--------------+----+----+----+----+----+----+
///          | 0             | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8        | 9            | 10 | 11 | 12 | 13 | 14 | 15 |
/// +========+===============+===+===+===+===+===+===+===+==========+==============+====+====+====+====+====+====+
/// | 0x00   |      start_addr: u32      |  length: u32  | type: u8 | dbg_skip: u8 |                             |
/// +--------+---------------------------+---------------+----------+--------------+-----------------------------+
/// | 0x10   | key_valid: u8 |                                                                                   |
/// +--------+---------------+-----------------------------------------------------------------------------------+
/// | 0x20   |                                        hash_key: bytes[32]                                        |
/// +--------+---------------------------------------------------------------------------------------------------+
/// ```
#[derive(Debug)]
pub struct Record {
    /// The starting address of the partition in the firmware image (4 bytes).
    pub start_addr: u32,

    /// The length of the partition in bytes (4 bytes).
    pub length: u32,

    /// The partition type (1 byte). This is an enum (`PartitionType`).
    pub part_type: PartitionType,

    /// A flag that indicates whether debugging should be skipped for this partition (1 byte).
    /// `true` means skip debugging, `false` means do not skip.
    pub dbg_skip: bool,

    /// A 32-byte hash key associated with this partition. By default, it's invalid
    hash_key: DataType<32>,
}

impl BinarySize for Record {
    /// Returns the size of the `Record` structure in bytes (64 bytes).
    #[inline]
    fn binary_size() -> usize {
        0x40
    }
}

impl Default for Record {
    /// Returns a default `Record` with zeroed and invalid fields.
    ///
    /// The default values are as follows:
    /// - `start_addr`: `0`
    /// - `length`: `0`
    /// - `part_type`: `PartitionType::PartTab` (default type)
    /// - `dbg_skip`: `false`
    /// - `hash_key`: `None` (invalid hash key)
    fn default() -> Self {
        Record {
            start_addr: 0,
            length: 0,
            part_type: PartitionType::PartTab, // Default to PartitionTab type
            dbg_skip: false,
            hash_key: None, // Invalid hash key by default
        }
    }
}

impl Record {
    // ------------------------------------------------------------------------------------
    // instance methods
    // ------------------------------------------------------------------------------------

    /// Checks whether the `hash_key` is valid.
    ///
    /// # Returns:
    /// - `true` if the `hash_key` is valid (non-`None` and passes the validation check).
    /// - `false` otherwise (e.g., if the key is `None` or invalid).
    pub fn hash_key_valid(&self) -> bool {
        match &self.hash_key {
            None => false,
            Some(key) => is_valid_data!(key), // checks key validity using the macro
        }
    }

    /// Returns a reference to the `hash_key`.
    pub fn get_hash_key(&self) -> DataRefType<32> {
        self.hash_key.as_ref()
    }

    /// Sets the `hash_key` to a new value.
    ///
    /// # Arguments:
    /// - `key`: A reference to a 32-byte array slice that represents the new `hash_key`.
    ///   If `None` is passed, the `hash_key` will be cleared.
    pub fn set_hash_key(&mut self, key: DataType<32>) {
        self.hash_key = key;
    }

}

impl FromStream for Record {
    /// Parses a `Record` from a binary stream.
    ///
    /// # Arguments:
    /// - `reader`: A mutable reference to a reader that implements `std::io::Read` and `std::io::Seek`.
    ///
    /// # Returns:
    /// - `Ok(())` if the record was successfully parsed.
    /// - `Err(Error)` if there was an issue reading from the stream.
    fn read_from<R>(&mut self, reader: &mut R) -> Result<(), Error>
    where
        R: io::Read + io::Seek,
    {
        self.start_addr = reader.read_u32::<LittleEndian>()?;
        self.length = reader.read_u32::<LittleEndian>()?;

        self.part_type = PartitionType::try_from(reader.read_u8()?)?;
        self.dbg_skip = reader.read_u8()? != 0;

        // Skip 6 bytes of padding.
        read_padding!(reader, 6);

        // Check if the hash_key is valid (using a specific flag).
        if reader.read_u8()? & 0x1 != 0 {
            read_padding!(reader, 15);
            read_valid_data!(self.hash_key, 32, reader);
        } else {
            // Skip 47 bytes if the hash_key is not valid
            read_padding!(reader, 47);
        }
        Ok(())
    }
}

impl ToStream for Record {
    /// Writes a `Record` to a binary stream.
    ///
    /// # Arguments:
    /// - `writer`: A mutable reference to a writer that implements `std::io::Write`.
    fn write_to<W>(&self, writer: &mut W) -> Result<(), Error>
    where
        W: io::Write,
    {
        writer.write_u32::<LittleEndian>(self.start_addr)?;
        writer.write_u32::<LittleEndian>(self.length)?;

        writer.write_u8(self.part_type as u8)?;
        writer.write_u8(self.dbg_skip as u8)?;

        write_padding!(writer, 6);
        writer.write_u8(self.hash_key_valid() as u8)?;
        write_padding!(writer, 15);
        write_data!(writer, self.hash_key, 32);
        Ok(())
    }
}

/// =====================================================================================
/// Partition Table (PartTab)
/// =====================================================================================
///
/// The `PartTab` struct represents a partition table for the flash, containing various
/// metadata and configuration related to the partitioning, as well as firmware-specific
/// data such as the state of firmware updates, trap configurations, and key export
/// operations.
///
/// # Layout:
/// ```text
///          +-----------------+------------------+---+----------+---------+-------------+-------------+---+---+---+-------+-------+-------+------+----+----------------+
///          | 0               | 1                | 2 | 3        | 4       | 5           | 6           | 7 | 8 | 9 | 10    | 11    | 12    | 13   | 14 | 15             |
/// +========+=================+==================+===+==========+=========+=============+=============+===+===+===+=======+=======+=======+======+====+================+
/// | 0x00   | rma_w_state: u8 | rma_ov_state: u8 |   | eFWV: u8 | num: u8 | fw1_idx: u8 | fw2_idx: u8 |           | ota_trap: u16 | mp_trap: u16 |    | key_exp_op: u8 |
/// +--------+-----------------+------------------+---+----------+---------+-------------+-------------+-----------+---------------+--------------+----+----------------+
/// | 0x10   |                   user_len: u32                   |                                         user_ext: bytes[12]                                          |
/// +--------+---------------------------------------------------+------------------------------------------------------------------------------------------------------+
/// | 0x20   |                                                                  records: Record * num                                                                   |
/// +--------+----------------------------------------------------------------------------------------------------------------------------------------------------------+
/// | 0x30   |                                                                                                                                                          |
/// +--------+----------------------------------------------------------------------------------------------------------------------------------------------------------+
/// | 0x40   |                                                                                                                                                          |
/// +--------+----------------------------------------------------------------------------------------------------------------------------------------------------------+
/// | 0x50   |                                                                                                                                                          |
/// +--------+----------------------------------------------------------------------------------------------------------------------------------------------------------+
/// | 0x60   |                                                                user_bin: bytes[user_len]                                                                 |
/// +--------+----------------------------------------------------------------------------------------------------------------------------------------------------------+
/// ```
#[derive(Debug)]
#[allow(non_snake_case)]
pub struct PartTab {
    pub rma_w_state: u8,
    pub rma_ov_state: u8,
    pub eFWV: u8,
    pub fw1_idx: u8,
    pub fw2_idx: u8,
    pub ota_trap: TrapConfig,
    pub mp_trap: TrapConfig,
    pub key_exp_op: KeyExportOp,
    user_ext: [u8; 12],
    records: Vec<Record>,
    user_bin: Vec<u8>,
}

impl Default for PartTab {
    fn default() -> Self {
        PartTab {
            rma_w_state: 0xFF,
            rma_ov_state: 0xFF,
            eFWV: 0,
            fw1_idx: 0,
            fw2_idx: 0,
            ota_trap: TrapConfig::default(),
            mp_trap: TrapConfig::default(),
            key_exp_op: KeyExportOp::None,
            user_ext: [0xFF; 12],
            records: Vec::new(),
            user_bin: Vec::new(),
        }
    }
}

impl PartTab {
    /// Returns the records in the partition table.
    ///
    /// # Returns:
    /// - A slice of `Record` structs.
    pub fn get_records(&self) -> &[Record] {
        return &self.records;
    }

    /// Returns the user binary data.
    ///
    /// This method provides access to the raw user binary data in the partition table.
    ///
    /// # Returns:
    /// - A slice of bytes representing the user binary data.
    pub fn get_user_bin(&self) -> &[u8] {
        return &self.user_bin;
    }

    /// Returns the user extension data (12 bytes).
    ///
    /// This method provides access to the 12-byte user extension field, which can be used
    /// for storing additional metadata related to the partition table.
    ///
    /// # Returns:
    /// - A reference to the 12-byte array representing the user extension data.
    pub fn get_user_ext(&self) -> &[u8] {
        return &self.user_ext;
    }

    /// Sets the user binary data in the partition table.
    ///
    /// # Arguments:
    /// - `user_bin`: A slice of bytes representing the new user binary data to store.
    pub fn set_user_bin(&mut self, user_bin: &[u8]) {
        self.user_bin.extend_from_slice(user_bin);
    }

    /// Sets the user extension data in the partition table.
    ///
    /// # Arguments:
    /// - `user_ext`: A slice of bytes representing the new user extension data (12 bytes).
    pub fn set_user_ext(&mut self, user_ext: &[u8]) {
        self.user_ext.copy_from_slice(user_ext);
    }

    /// Adds a new partition record to the partition table.
    ///
    /// # Arguments:
    /// - `record`: The `Record` struct that defines the new partition entry to add.
    pub fn add_record(&mut self, record: Record) {
        self.records.push(record);
    }

    /// Creates and returns a new record for a specific partition type.
    ///
    /// # Arguments:
    /// - `part_type`: The `PartitionType` enum value representing the type of the new record.
    ///
    /// # Returns:
    /// - A mutable reference to the newly created record.
    pub fn new_record(&mut self, part_type: PartitionType) -> &mut Record {
        let mut r = Record::default();
        r.part_type = part_type;
        self.records.push(r);
        return self.records.last_mut().unwrap();
    }

    /// Returns the record for a specific partition type.
    ///
    /// # Arguments:
    /// - `part_type`: The `PartitionType` enum value representing the partition type.
    ///
    /// # Returns:
    /// - `Some(&Record)` if the record for the given partition type is found.
    /// - `None` if the record for the given partition type is not found.
    pub fn get_record(&self, part_type: PartitionType) -> Option<&Record> {
        return self.records.iter().find(|r| r.part_type == part_type);
    }

    /// Returns the record for a specific partition type.
    ///
    /// # Arguments:
    /// - `part_type`: The `PartitionType` enum value representing the partition type.
    ///
    /// # Returns:
    /// - `Some(&mut Record)` if the record for the given partition type is found.
    /// - `None` if the record for the given partition type is not found.
    pub fn get_record_mut(&mut self, part_type: PartitionType) -> Option<&mut Record> {
        return self.records.iter_mut().find(|r| r.part_type == part_type);
    }

    /// Removes a partition record from the partition table.
    ///
    /// # Arguments:
    /// - `part_type`: The `PartitionType` enum value representing the partition type to remove.
    pub fn rem_record(&mut self, part_type: PartitionType) {
        self.records.retain(|r| r.part_type != part_type);
    }

    /// Checks if a record exists for a specific partition type.
    ///
    /// # Arguments:
    /// - `part_type`: The `PartitionType` enum value representing the partition type to check.
    ///
    /// # Returns:
    /// - `true` if a record exists for the given partition type.
    /// - `false` if no record exists for the given partition type.
    pub fn has_record(&self, part_type: PartitionType) -> bool {
        self.get_record(part_type).is_some()
    }
}

impl FromStream for PartTab {
    /// Parses a `PartTab` from a binary stream.
    ///
    /// # Returns:
    /// - `Ok(())` if the `PartTab` was successfully parsed.
    /// - `Err(Error)` if there was an issue reading from the stream.
    ///
    fn read_from<R>(&mut self, reader: &mut R) -> Result<(), Error>
    where
        R: io::Read + io::Seek,
    {
        self.rma_w_state = reader.read_u8()?;
        self.rma_ov_state = reader.read_u8()?;
        self.eFWV = reader.read_u8()?;
        read_padding!(reader, 1);

        let num = reader.read_u8()? as u32;
        self.fw1_idx = reader.read_u8()?;
        self.fw2_idx = reader.read_u8()?;
        read_padding!(reader, 3);

        self.ota_trap = TrapConfig::from(reader.read_u16::<LittleEndian>()?);
        self.mp_trap = TrapConfig::from(reader.read_u16::<LittleEndian>()?);

        // Skip the byte set to 0xFF manually in generate_pt_table()
        read_padding!(reader, 1);
        self.key_exp_op = KeyExportOp::try_from(reader.read_u8()?)?;

        let user_len = reader.read_u32::<LittleEndian>()?;
        reader.read_exact(&mut self.user_ext)?;

        // Read the partition records (num + 1, including boot record).
        for _ in 0..=num {
            self.records.push(from_stream(reader)?);
        }

        // Resize the user binary data to the correct length and read it.
        self.user_bin.resize(user_len as usize, 0xFF);
        reader.read_exact(&mut self.user_bin)?;

        Ok(())
    }
}

impl ToStream for PartTab {
    /// Writes a `PartTab` to a binary stream.
    ///
    /// # Arguments:
    /// - `writer`: A mutable reference to a writer that implements `std::io::Write`.
    fn write_to<W>(&self, writer: &mut W) -> Result<(), Error>
    where
        W: io::Write + io::Seek,
    {
        writer.write_u8(self.rma_w_state)?;
        writer.write_u8(self.rma_ov_state)?;
        writer.write_u8(self.eFWV)?;
        writer.write_u8(0x000)?;

        if self.records.is_empty() {
            return Err(Error::InvalidState("Empty partition table".to_string()));
        }
        writer.write_u8((self.records.len() - 1) as u8)?;
        writer.write_u8(self.fw1_idx)?;
        writer.write_u8(self.fw2_idx)?;
        write_padding!(writer, 3);

        writer.write_u16::<LittleEndian>(self.ota_trap.into())?;
        writer.write_u16::<LittleEndian>(self.mp_trap.into())?;

        // Skip the byte set to 0xFF manually in generate_pt_table()
        write_padding!(writer, 1);
        writer.write_u8(self.key_exp_op as u8)?;

        writer.write_u32::<LittleEndian>(self.user_bin.len() as u32)?;
        writer.write_all(&self.user_ext)?;

        // Write the partition records (num + 1, including boot record).
        for record in &self.records {
            record.write_to(writer)?;
        }

        // Write the user binary data.
        writer.write_all(&self.user_bin)?;
        Ok(())
    }
}

/// =====================================================================================
/// Partition Table Image (PartitionTableImage)
/// =====================================================================================
///
/// The `PartitionTableImage` struct represents a complete partition table image, including
/// the key block, header, partition table, and a hash value. It provides methods to read
/// the image from a stream, retrieve the hash, and generate its signature.
#[derive(Debug)]
pub struct PartitionTableImage {
    pub keyblock: KeyBlock,
    pub header: ImageHeader,
    pub pt: EncryptedOr<PartTab>,
    hash: [u8; 32],
}

impl FromStream for PartitionTableImage {
    /// Parses a `PartitionTableImage` from a binary stream.
    ///
    /// # Arguments:
    /// - `reader`: A mutable reference to a reader that implements `std::io::Read` and `std::io::Seek`.
    ///
    /// # Returns:
    /// - `Ok(())` if the partition table image was successfully parsed.
    /// - `Err(Error)` if there was an issue reading from the stream.
    fn read_from<R>(&mut self, reader: &mut R) -> Result<(), crate::error::Error>
    where
        R: std::io::Read + std::io::Seek,
    {
        // Read the components of the partition table image
        self.keyblock.read_from(reader)?;
        self.header.read_from(reader)?;

        // Save the current position to determine the expected size later
        let start_pos = reader.stream_position()?;
        if self.header.is_encrypt {
            self.pt = EncryptedOr::Encrypted(vec![0x00; self.header.segment_size as usize]);
            self.pt.read_from(reader)?;
        } else {
            self.pt = EncryptedOr::Plain(from_stream(reader)?);
        }
        let current_pos = reader.stream_position()?;
        let target_pos = start_pos + self.header.segment_size as u64;

        // If the stream is behind of the expected position, seek back
        if current_pos < target_pos {
            reader.seek(io::SeekFrom::Current((target_pos - current_pos) as i64))?;
        }
        reader.read_exact(&mut self.hash)?;
        Ok(())
    }
}

impl PartitionTableImage {
    /// Returns a reference to the 32-byte hash value of the partition table image.
    ///
    /// # Returns:
    /// - A reference to the 32-byte hash array.
    pub fn get_hash(&self) -> &[u8; 32] {
        return &self.hash;
    }

    /// Creates a signature for the partition table image using HMAC-SHA256.
    ///
    /// This function generates a signature by using the HMAC (Hash-based Message Authentication
    /// Code) algorithm with SHA-256. It takes a key and the partition table image data (excluding
    /// the `hash` field) as inputs, and returns the resulting signature as a vector of bytes.
    ///
    /// # Arguments:
    /// - `reader`: A mutable reference to a reader that implements `std::io::Read` and `std::io::Seek`.
    /// - `key`: The key to be used in the HMAC algorithm, which should be a byte slice.
    ///
    /// # Returns:
    /// - `Ok(Vec<u8>)` containing the cryptographic signature.
    /// - `Err(Error)` if an error occurs during reading or signature generation.
    ///
    /// # Example:
    /// ```rust
    /// let signature = pt_image.create_signature(&mut reader, &key).unwrap();
    /// ```
    pub fn create_signature<R>(&self, reader: &mut R, key: &[u8]) -> Result<Vec<u8>, Error>
    where
        R: io::Read + io::Seek,
    {
        // Buffer for reading the data, size calculated based on header and segment size
        let mut buffer =
            vec![0xFF; 64 + ImageHeader::binary_size() + self.header.segment_size as usize];

        reader.read_exact(&mut buffer)?;
        return Ok(hmac_sha256(key, &buffer)?.to_vec());
    }
}

impl AsImage for PartitionTableImage {
    /// Computes the segment size for the partition table image.
    ///
    /// The segment size includes the sizes of the keyblock, header, partition table records,
    /// and the user binary data.
    ///
    /// # Returns:
    /// - `u32`: The computed segment size.
    fn build_segment_size(&self) -> u32 {
        // segment size is partition table static size + partition table records + user data length
        let new_size = match &self.pt {
            EncryptedOr::Encrypted(data) => data.len() as u32,
            EncryptedOr::Plain(data) => {
                (0x20 + ((data.records.len() + 1) * Record::binary_size()) + data.user_bin.len())
                    as u32
            }
        };

        // align size to 0x20
        return new_size + (0x20 - (new_size % 0x20));
    }

    /// Computes the signature for the partition table image.
    ///
    /// This method generates the HMAC SHA-256 signature for the image using the provided key.
    ///
    /// # Arguments:
    /// - `key`: The key used to compute the HMAC SHA-256 signature.
    ///
    /// # Returns:
    /// - `Result<Vec<u8>, crate::error::Error>`: The computed signature as a vector of bytes.
    fn build_signature(&self, key: Option<&[u8]>) -> Result<Vec<u8>, Error> {
        let mut buffer =
            vec![0xFF; 64 + ImageHeader::binary_size() + self.build_segment_size() as usize];
        let mut writer = Cursor::new(&mut buffer);

        self.keyblock.write_to(&mut writer)?;
        self.header.write_to(&mut writer)?;
        self.pt.write_to(&mut writer)?;
        Ok(hmac_sha256(key.unwrap(), &buffer)?.to_vec())
    }

    /// Sets the signature for the partition table image.
    ///
    /// This method sets the signature in the image, typically after it has been calculated.
    ///
    /// # Arguments:
    /// - `signature`: The signature to set in the image.
    fn set_signature(&mut self, signature: &[u8]) {
        self.hash.copy_from_slice(signature);
    }

    /// Sets the segment size for the partition table image.
    ///
    /// This method allows setting the segment size manually.
    ///
    /// # Arguments:
    /// - `size`: The segment size to set.
    fn set_segment_size(&mut self, size: u32) {
        self.header.segment_size = size;
    }
}

impl Default for PartitionTableImage {
    /// Returns a default `PartitionTableImage` with default values for all fields.
    ///
    /// The `keyblock`, `header`, and `pt` are initialized with their respective defaults,
    /// and the `hash` field is set to an array of `0xFF` bytes (representing an uninitialized hash).
    ///
    /// # Returns:
    /// - A `PartitionTableImage` with all fields set to their default values.
    ///
    /// # Example:
    /// ```rust
    /// let default_pt_image = PartitionTableImage::default();
    /// ```
    fn default() -> Self {
        PartitionTableImage {
            keyblock: KeyBlock::default(),
            header: ImageHeader::default(),
            pt: EncryptedOr::Plain(PartTab::default()),
            hash: [0xFF; 32],
        }
    }
}

impl ToStream for PartitionTableImage {
    /// Writes a `PartitionTableImage` to a binary stream.
    ///
    /// Note that this method does not check for valid segment size or hash values, and the
    /// padding is applied automatically as part of the partition table write process.
    ///
    /// # Arguments:
    /// - `writer`: A mutable reference to a writer that implements the `std::io::Write` and
    ///   `std::io::Seek` traits.
    ///
    /// # Returns:
    /// - `Ok(())` if the write operation is successful.
    /// - `Err(Error)` if there is an error during the write operation.
    fn write_to<W>(&self, writer: &mut W) -> Result<(), Error>
    where
        W: io::Write + io::Seek,
    {
        // Write the keyblock and header to the stream
        self.keyblock.write_to(writer)?;
        self.header.write_to(writer)?;

        // Create a buffer to hold the partition table (with padding applied)
        let mut pt_buffer = vec![0xFF; self.header.segment_size as usize];
        let mut pt_writer = Cursor::new(&mut pt_buffer);
        self.pt.write_to(&mut pt_writer)?;

        writer.write_all(&pt_buffer)?;
        writer.write_all(&self.hash)?;
        Ok(())
    }
}